Understanding Corrosion Mechanisms in Oxy-Fired Systems

B. A. Pint, M. A. Bestor, S. Dryepondt Oak Ridge National Laboratory Oak Ridge, TN 37831-6156

Y. Zhang (sub-contractor)
Tennessee Technological University
Cookeville, TN 38505

Research sponsored by the U.S. Dept. of Energy, Fossil Energy Advanced Research Materials Program (V. Cedro project monitor)

Acknowledgments

ORNL

- G. Garner, T. Brummett, M. Stephens, M. Howell oxidation experiments
- J. Moser, T. Jordan, A. Willoughby creep testing
- H. Longmire metallography
- T. Brummett SEM, image analysis
- L. Walker (retired), D. Leonard EPMA
- A. Haynes, K. Cooley CVD coating fabrication

UC-Pomona

V. Ravi - pack chromizing

12MWh/yr per U.S. resident

Where will it come from?

coal?

how?

VS.

Literature - focus on worst condition

Several studies published by Alstom (Bordenet)

Germany: 30MW oxy-fired pilot plant (Alstom)

FutureGen 2.0: first major U.S. demonstration

Current Tasks & Timeline

- 1. Steam/gas corrosion (no ash)
- 2. Fireside corrosion (with ash)
- 3. Environment-mechanical property effect
 - effect of steam on creep
- 4. Coatings (effect on mechanical properties)
 - lower cost fireside coatings
 - TTU subcontract (fabrication and model)
- 5. Management
- A. ~600°C ferritic/martensitic steels (FY10-11)
- B. ~650°-700°C austenitic steels
- C.~700°-750+°C Ni-base alloys
 - creep testing at 800°C (FY11)

What's different here?

Many previous & current studies of oxy-firing & CO₂

- "Oxy" worse: Speigel (2006) + Corvino (2008)
- Complicated: boiler OEMs have advantage
- CO₂ effect: Jülich, U. Pitt & Australia (Young)

Issues with fireside corrosion experiments:

Different experimental conditions (if published)

1000h vs. 10 x 100h (ash re-supply)

Ash/gas/temp. variables

Use of Pt catalyst (SO₂/SO₃)

* Evaluate experimental parameters

Typically, only commercial alloys evaluated
Prior work showing Cu-containing alloy attacked
Was it an effect of Cu or other element(s)?

* Model alloys to better understand composition

Not just commercial alloys

Model alloys: better composition understanding

Cast 400g, hot-roll to 8mm: cut coupons & rods

Corrosion testing w/o ash

Determine effect of higher CO₂,

17bar or 1bar

gas only, no ash

- H₂O only
- Ar-50%CO₂*
- H₂O-50%CO₂*
- (*CO₂+1500ppmO₂)

Synthetic ash: 30%Fe₂O₃-30%Al₂O₃-

30%SiO₂-5%Na₂SO₄-5%K₂SO₄

Gas: N_2 - CO_2 - H_2O - O_2 - SO_2

Temperature: 600°C

Time: 500h (1 cycle)

Porous alumina

Continuing to establish methodology + procedure H₂O-SO₂ gases corrode the endcaps!

Summary: Gas only exposure

- 1. 550°C steam 17bar: completed 5kh bring 600°-800°C data set back to "now"
- 2. 600°C: completed 2kh each
 - a. steam 1 bar
 - b. Ar-50%CO₂-0.15O₂
 - 1500ppmO₂ as buffer
 - c. 50%CO₂-0.15O₂-50%H₂O
- 3. 600°C: coupons in "ash" furnaces w/SO₂
- 4. 800°C steam 17bar: USC follow on
- 5. 650°C (starting now, focus austenitics)
 - 3 gases to repeat 600°C

~12%Cr needed at 550°C

For protective behavior at 17bar steam

Surprisingly, little difference in 2.25-11%Cr steels 5,000h cross-sections in progress

600°C: H₂O worse than CO₂

Current Quadakkers (Jülich) work (no O buffer) - concluded that H₂O worse than CO₂

Hypothesis: S and/or H_2O hides ΔCO_2 effect

600°C: commercial Fe-Cr (thick oxide in steam) model Fe-Cr (20%Cr bad in CO₂-H₂O) model Fe-Cr-Ni (20Cr-20Ni attacked)

800°C steam follow up work

Alloy 282: 5kh in 17bar steam or lab. air

Model alloys: Ni-22Cr + Al +/- Ti in steam

New coal ash tests: H₂O added

Air- and Oxy-firing conditions: 600°C, 500h

Modified gas train to add H₂O to test
Mass gain: not a strong effect of H₂O
Change to oxy-firing had strongest effect on high Cr

Oxy-firing is more complicated

Bordenet (Alstom) presented worst case

- hot flue gas recycle with no cleaning (unlikely, flue gas cools oxy-fired boiler)
- options: cooling flue gas + de-sulfurization

	air-fire	O ₂ -fire	(w/FGD)	
		(hot)	(warm)	(cool)
CO_2	15	61%	61%	83%
$H_2\bar{O}$	10	30%	30%	10%
\overline{O}_2	2	2%	2%	2%
SO_2	0.15	0.45%	0.15%	0.45%

Third series: varied SO₂ and H₂O

Air- and Oxy-firing conditions: 600°C, 500h

2-9Cr: all heavy attack, difficult to quantify

Higher Cr alloys: "oxy" was worst (high SO₂/H₂O)

740 (Ni-23Cr): all oxy (high CO₂) were higher

Evaluated weld-overlay coupons

Air- and Oxy-firing conditions: 600°C, 500h

Nominal composition wt.%

from TiNova

	Fe	Ni	Cr	other
309L	60	14	23	1Mn, 1Si
8020		80	20	
33	33	31	33	2Mo,1Cu
52	9	63	29	
72		57	43	0.3Ti
C22	3	58	23	13Mo,3W

Rectangular coupons: removed overlay from tube

- ~1mm thick
- face adjacent to substrate has some dilution
- mass change data meaningless

Box plots to quantify attack

Air- and Oxy-firing conditions: 600°C, 500h

40 data points taken from 500X pictures including scale + internal oxidation high Ni coating more oxidation resistant attack not increased in oxy-firing conditions

Box plots for effect of chemistry

Oxy-firing + ash condition: 600°C, 500h

Commercial coatings:

Cr content not predictive Average:

increases with Ni decreases with Fe Cr/Ni synergy not clear

Ash experiment issues

Three series of experiments completed:

- ΔCO_2 : initial runs without H_2O
- air/oxy: worst case comparison with H₂O
- "milder" oxy-firing: lower H₂O or SO₂

Test protocols to be evaluated:

- use of Pt catalyst (no catalyst running now)
- crucible (covered sample) vs. ash slurry
- cycle frequency 10 x 100h vs. 500h x ?
- goal: "actual" rate or accelerated?

Metal loss measurement

- loss in rod diameter: significant scatter
- box plots capture variable attack

Ash composition: how changed by oxy-firing?

Task 3: effect of steam on creep?

Little experience with new alloys in steam

ex-situ (in air)

Creep testing:

as-received after 800°C steam after 800°C anneal

In H₂O, any effect of H injected into metal?

Better comparison: coating debit vs. corrosion debit

Ex-situ testing: anneal vs. steam 2kh anneal to account for thermal effect

230: no effect of 2kh in steam at 800°C

740/617: decrease life after 2kh steam larger decrease with 800°C 2kh anneal (?)

Ex-situ vs. in-situ testing: 230

Creep testing in steam at 800°C

230: no effect of 2kh in steam
In-situ creep rupture life similar to life in air similar ductility
thinner scale - due to strain?

Mechanical testing summary

Ex-situ: Ni-base alloys 230, 740, 617, 718

800°C 2 &4 kh steam and anneal

completing matrix in FY11

In-situ: First rig operational (2nd in progress)

No LVDT in alumina tube

Data: rupture time/mode, no long time

Characterize reaction product

Initial work on Ni-base alloys (high interest)
Next move to Fe-base 9-12%Cr

Coating results at 600°C

Low AI content chemical vapor deposition coating

Conclusions:

Coating prevents thick oxide formation in steam Coating less effective on low Cr substrates CO_2 - H_2O is most aggressive environment

Summary

Four tasks: gas only, with ash, creep, coatings

Completed gas only baseline: 550° & 600°C CO₂+H₂O most severe - similar to others

Coal ash corrosion: 600°C 500h exposures exploring test parameters evaluation of oxy-firing scenarios box plots for quantifying metal attack overlay coating specimens: oxy not worse

Creep: ex-situ completing, in-situ beginning Ni-base: perhaps limited effect of steam

Coatings - model alloys may suggest overlays

GLEAN GOAL. GOOL.

